Precision is essential in nearly every industry, particularly ones that rely heavily on accuracy and repeatability like aerospace, defense, medical, and electronics. As companies push for more performance and reliability, it puts an even greater emphasis on the need for tight-tolerance metal laser cutting. Because of this, we have seen an increased demand on high-quality components with never seen before precision.
In this article, we will explore how to hold tight tolerances while laser cutting sheet metal. We will also look at the factors to consider when determining then whether a metal part is suitable for tight tolerance laser cutting.

How Do Laser Cutters Work?

Laser cutters use a high-powered laser beam to cut through various metals. They also utilize computer numerical control (CNC) mechanisms that steer and guide the beam to cut the metal into a particular shape or design.
The first step in using laser technology for manufacturing sheet metal parts is to design the piece with computer-aided design (CAD) software. Once the part is designed it is then loaded into computer-aided manufacturing (CAM) software that will determine the optimal toolpath as well as intensity and assist gas settings. The CAM software will then compile all the information into G-code for the laser to read.
The next step involves focusing the laser beam on the metal surface through a lens. This enables precise melting or vaporization of the metal and generates a clean and accurate cut with minimal finishing. Once the cutting process is done, the cut part is detached from the metal sheet or plate. Lastly, additional finishing may be needed, depending on the intricacy of the design.

Key Considerations When Cutting a Metal Part

Various factors must be considered when evaluating a part’s suitability for this cutting technology. The following are four key considerations:

Quantity

Laser cutting has low startup costs and can be quickly adjusted based on customer requirements which makes it ideal for prototyping and small-scale production. However, it may be less economical for large-scale production runs than other techniques like stamping. This is due to the slower run rates compared to stamping, which in the long run is more cost saving than the initial tooling investment.

Material and Thickness

The utilization of laser technology is an excellent choice for cutting a wide range of metals, such as brass, copper, stainless steel, and aluminum. However, it is important to note the thickness of the material being cut. Most cutters can handle materials up to 0.500 thick of mild steel, 0.250. Thicker gauges require more power and time for cutting, resulting in higher costs.

Size and Shape

The geometry of the part is an important factor to consider when laser cutting sheet metal parts. Features on the part should be bigger than the thickness of the material, especially for thicker material. Additionally, ideal parts for laser cutting don’t contain sharp radii or jagged edges.
Other than those two limitations, laser cutters are great at cutting any kind of part geometry imaginable. Things like splines, polylines, and French curves are all well within the realm of possibility for laser cutters.

Internal Features

Laser cutting is a precise method for creating parts with intricate internal features like holes, cutouts, and slots. Although laser cutting is perfectly suited for a large number of highly detailed features, it is important to note that the laser does need to lead into its cuts in order to avoid splatter. This effectively limits the size of internal features to features bigger than roughly 1/16 of an inch. Anything smaller than that and it starts to degrade in accuracy and performance. Outside of the smallest of features the process is incredibly accurate, highly repeatable, and ensures consistency in producing parts.

Metal Stamping vs. Metal Laser Cutting

Metal stamping and laser cutting are two inherently different processes to create flat sheet metal parts. They both are equally viable but have different strengths and weaknesses so care must be taken in deciding how to manufacture parts.
Metal stamping employs a die and punch tool in a stamping press to shear the sheet metal to the right shape and size. The only limitation to manufacturing rates is the cycle rate of the machine. The downside is the investment in tooling and the inability to make changes to the design. This makes it a more attractive option for larger orders where the part is already fully engineered and developed.
In contrast, laser cutting machines cut metal by melting. They need to trace out the profile of the part one feature at a time making them much slower than stamped parts. Fortunately, there is very little initial investment, and the design can be changed as much as the client needs. This lends itself to prototypes or one-off jobs that need to be turned around quickly and efficiently.

Choose Verdugo Tool and Engineering Co. for Premium Metal Fabrication Solutions

Since 1957, Verdugo Tool and Engineering Co. has delivered high-quality metal fabrication solutions! These include tool and die design, metal stamping, and other value-added services. Our skilled engineers, tool makers, and press operators ensure that the parts are delivered promptly and meet industry standards.
Contact us today to learn more about our services! You can also request a quote

to start your project with us

Leave a Reply

Your email address will not be published. Required fields are marked *